JDS Academy - course material #2

JDS Academy - course material #2


Supplementary material: Cheat Sheets

  • SQL,
  • Python,
  • Bash



Additional JDS course material:
table of content of A/B testing.

WEEK 0

Installation of a Linux webserver  on Linode cloud + I made a Linux workstation, both with Ubuntu.

WEEK 1

# Module 1: Introduction to Data Science

  • What is Data Science? Case study.
  • Clarification of AI, ML, big data, deep learning concepts.

# Module 2: How to become a Data Scientist

  • Soft skills, mindset, time commitment, roadmap, learning curve.

# Module 3: SQL Introduction - European accidents dataset

  • Introduction to SQL Workbench and pgAdmin, installation.
  • SQL server configuration
  • Importing data into SQL, data analysis.

# Module 4: SQL Basics + Simple Queries

  • Basic SQL exercises.

# Module 5: SQL WHERE with Multiple Filter Conditions - European accidents dataset

  • Advanced filtering techniques.

# Module 6: SQL WHERE + ORDER BY - European accidents dataset

  • Combination of sorting and filtering.

# Module 7: SQL Functions (COUNT, SUM, AVG, MIN, MAX) - European accidents dataset

  • Basic Aggregation Functions.

WEEK 2

# Module 1: SQL Functions + GROUP BY

  • Grouping and Aggregation.

# Module 2: SQL Table Joining (JOIN)

  • Table Joining Techniques.

# Module 3: SQL Subqueries + HAVING

  • Nested Queries and Conditional Filtering.

# Module 4: Extra Task (Case Study) - Mobile App User and Business Data Analysis

  • Data-Driven Tasks.

# Module 5: Data Analysis Methodologies

# Vault: SQL Exercises

  • Interview-Preparing SQL Tasks.
    • A/B test data, 
    • Solar panel factory production data analysis, 
    • Travel blog User and business analysis.

WEEK 3

# 0. Module: Setting up your own server

  • Installing and configuring a database server.
    Note: I have done on the 0th week. Linode webserver + Linux workstation, Ubuntu

# 1. Module: Bash Basics

  • Basics of Bash commands and scripts. ETL with bash

# 2. Module: Bash Basics continued

  • Additional practical tasks. ETL with bash

# 3. Module: Scripts and automation in Bash

  • Automation techniques.

# 4. Module: Data collection

WEEK 4

# 1. Module: Python Introduction, Variables, Data structures

  • Jupyter Notebook management, variables and structures.

# 2. Module: Python Functions, If Branches, For Loops

  • Basic Python programming techniques.

# Module 3: Python Practice

  • Various python practice tasks, basic operations/logical functions.

# Module 4: Statistics

WEEK 5

# Module 1: Python + Analytics: Pandas basics

  • Data Management with Pandas.

# Module 2: Pandas GroupBy, Functions, Sorting

  • Advanced data management techniques.

# Module 3: Data Visualization with Python + Pandas

  • Creating graphs and visualizations.

# Module 4: Predictive Analytics

WEEK 6

# Module 1: Machine Learning Examples in Python

  • Linear and Polynomial Regression, 
  • Random Forest, 
  • Deep Learning.

# Module 2: Data Presentation


JDS Course material (table of content) of A/B testing.

No comments:

Post a Comment

Snowflake universe, part #6 - Forecasting2

Forecasting with built-in ML module Further posts in  Snowflake  topic SnowFlake universe, part#1 SnowFlake, part#2 SnowPark Notebook Snow...